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A Highly Linear Dual-Stage Amplifier With
Beyond 1.75-THz Gain—Bandwidth Product

T. Shivan*', M. Hossain"”, R. Doerner

Abstract—This work reports a multipurpose highly linear
ultrawideband amplifier with a gain-bandwidth product (GBP)
of 1.75 THz, the highest reported in any monolithic microwave
integrated circuit (MMIC) process. A transimpedance amplifier
is cascaded with a distributed amplifier, emulating a receiver
subsystem. Using a diamond heat spreader, to dissipate heat from
transistors, the cascaded amplification subsystem can achieve
very high output third-order-intercept point (OIP3) from 20 to
24 dBm when measured between 5 and 65 GHz. A small-signal
average gain of 24 dB is observed over a frequency range exceed-
ing the maximum measurable bandwidth from dc to 110 GHz.
Compared with other ultrawideband MMIC amplifiers beyond
110-GHz bandwidth, the circuit offers a unique combination of
high linearity (OIP3) and high gain. As a result, the cascaded
amplifier is suitable for applications in optical-electrical convert-
ers, spectroscopy, and ultrawideband measurement systems in the
subterahertz frequency range.

Index Terms— Distributed amplifier (DA), gain-bandwidth
product (GBP), InP double heterojunction bipolar transistor
(DHBT), monolithic microwave integrated circuit (MMIC).

I. INTRODUCTION

ATA transceiver systems have developed rapidly in the

past years, for wireline, wireless, and hybrid (RF over
fiber) systems. Recently, wireless communication has been
commercially rolled out for 5G, promising >1 Gbps to user’s
end. Development is running toward future standards for even
higher throughputs. Wireline communication is racing toward
commercial implementation with >100 Gbps single-channel
optical throughput. Clearly, the communication world now
requires ultrawideband amplifiers for high bit-rate transceiver
applications for both wireless and wireline technologies. As a
domino effect, characterizing such broadband systems requires
ultrawideband measurement platforms, which in turn demand
for ultrawideband multipurpose amplifiers. Typical figure of
merits for such amplifiers are high gain—-bandwidth product
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(GBP), decent efficiency, low deviation from linear phase, high
linearity, and low dc power consumption.

Distributed amplifier (DA) topology has historically shown
to cater more than an octave bandwidth, the aforementioned
applications require. With the first report of a DA being
based on GaAs MESFET monolithic microwave integrated
circuits (MMICs) [1], several technologies have been used
since then to improve in GBP, power, and low deviation from
linear phase. With state-of-the-art CMOS [2] and SiGe bipolar
complementary metal oxide semiconductor (BiCMOS) [3]
technologies, high bandwidths up to 180 GHz have been
achieved. With InP HEMT [4] and InP double heterojunction
bipolar transistor (DHBT) [5]-[9] technology, bandwidths up
to 241 GHz have been reported. Overall, however, the DAs
based on InP DHBTs [8], [9] have shown the strongest
promise regarding the abovementioned features. The chal-
lenge now is to realize the entire front-end modules, e.g.,
a transimpedance amplifier (TTA) with a buffer amplifier in
an optical-to-electronics communication system or high-gain
power amplifiers with power buffers in a measurement system.

This letter presents a significant leap forward toward
amplifiers demonstrating a high GBP as well as high linearity.
Using a transistor with f;, fiax values of 350 GHz/450 GHz
and a dual-stage amplifier subsystem, a measured GBP
of >1.75 THz has been obtained with a gain of 24 dB over a
frequency from dc to > 110 GHz. These highest reported gain
and GBP values are obtained using a transimpedance gain
stage followed by a DA for bandwidths above 110 GHz. The
transimpedance stage serves as a versatile input stage, the input
impedance of which can be adjusted when intended for use
in optical transceivers to match the photodiode impedance or
when in measurement systems 50 € characteristic impedance
have to be realized.

II. TECHNOLOGY

The circuit presented in this article is based on the 3-in
Ferdinand Braun Institut (FBH) transfer substrate InP DHBT
technology as illustrated in Fig. 1(a).

In this process, emitter, base, and ground layers of the
heterojunction bipolar transistor (HBT) are processed before
the complete structure is flipped and bonded on a carrier sili-
con wafer using a benzocyclobutene (BCB) bonding process.
After substrate removal, collector contacts are processed and
aligned to the emitter contacts. In the first planarization step,
the base, collector, and emitter are connected to the first
metallization layer G1. To realize the passives, SiN-based
metal-insulator-metals (MIMs) capacitors with a capacitance
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Fig. 1. (a) Layer stack of the transferred-substrate process. (b) Self-heating
improvement of common base transistor (0.5 x 5 xm?) using diamond heat
spreader.

of 0.3 fF/um? and NiCr resistors with 25 Q/sq sheet resistance
are used. Three routable metal layers G3, G2, Gl, and a
ground metal layer Gd with respective thicknesses of 4, 4.5,
1.5, and 3 um serve the electrical connection. For thermal
reasons, a diamond heat spreader is bonded on top of the
final wafer [10].

A. Advantage of Using Diamond Heat Spreader

Due to the transistor stack and layout, the common base
configuration suffers significantly from thermal load as com-
pared to the common emitter configuration. The disparity in
the thermal performance stems from the fact that in the com-
mon emitter case, the transistor is thermally grounded through
the ground layer metallization. In the common base configu-
ration, such a thermal path cannot be realized as the emitter
contact serves as RF signal input. Hence, by adding a diamond
heat spreader, the performance of the common base transistor
is significantly improved. This effect can be visualized by the
TCAD simulations shown in Fig. 1(b). The simulation takes
into account the vias, transistor self-heating as well as the
diamond heat spreader. It is clear from the simulation that
without a heat spreader the common base transistor can heat up
to 80 °C in comparison to only 57 °C for the common emitter.
By adding the diamond heat spreader, the device temperature
for the common base can be lowered down to 62 °C at voltage
across collector-emitter (VCE) of 2 V.

III. CIRCUIT DESIGN

This dual-stage high-gain amplifier MMIC consists of a
high-gain transimpedance stage and a power buffer stage in
the form of a DA [5]. The simplified circuit diagram is
given in Fig. 2(a). The transimpedance stage is designed as
a versatile gain stage with a gain of 12 dB and a bandwidth
of 130 GHz. The low input impedance of the transimpedance
stage mitigates the capacitive effect from the photodiode when
it acts as a regular TIA, converting the current signal of the
photodiode to a voltage signal with 50-Q output impedance.
When it is intended to be used in a measurement system,
the input can be easily redesigned to match 50 €, with the sole
purpose of voltage gain. The use of a transimpedance stage
can, therefore, be optimized with minimum design effort.

The power buffer stage consists of a DA with a simulated
gain of 14 dB and a large signal P;4g beyond 10 dBm and a
bandwidth of more than 110 GHz [5]. With a diamond heat
spreader, the circuit can achieve even higher linearity over
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Fig. 2. (a) Simplified circuit diagram of the amplifier subsystem. (b) Chip
photograph (1.8 x 1 mm?).
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Fig. 3. S-parameter data with simulation (dotted line) and measurement
values (solid lines).

the bandwidth as already presented in [11]. Therefore, it can
be used as a buffer amplifier for high-bandwidth applications
which require amplification from near dc to 110 GHz and
beyond. The DA consists of five equally spaced cells, each cell
containing a cascode-stacked transistor with reduced Miller
capacitance and higher bandwidth. The cells act as loss com-
pensators of the distributed lines, which accounts for the large
bandwidth of the buffer and its high linearity. When cascaded
together, they are intended to provide very high gain over
the bandwidth of the amplifiers. The most important feature
obtained in this way is having at the same time high gain,
large bandwidth, and good linearity in a single subsystem. The
chip photograph of the realized InP DHBT MMIC is shown
in Fig. 2(b).

IV. MEASUREMENTS AND DISCUSSION
A. Small-Signal Measurements

The small-signal performance was measured from dc to
110 GHz using on-wafer probing with 100-ym pitch and
multiline through-reflect-line (mTRL) on-wafer calibration.

Fig. 3 presents the simulated versus measured data of the
subsystem. The overall small-signal gain, represented in the
50 Q environment by S, varies between 21 and 30 dB with an
average value of 24 dB. For the reflection coefficients, S;; and
S»o, the values are below —10 dB except between 50-70 GHz
and 80-110 GHz where it reaches a value of —7 dB.
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TABLE I
ULTRAWIDEBAND DAS WITH BANDWIDTH LARGER THAN 110 GHZ (TABLE IS ARRANGED IN ORDER OF INCREASING GBP)
GBP BW Gain Ppc Linearity as P43 or OIP3
Ref. Technology MMIC Topology
(GHz) (GHz | (dB) | (mW) (dBm) @Freq (GHz)
[13] 278 40 nm GaN DHFET Cascode 120 7.3 448 Pigs= 15.5@20
[12] 390 50 nm InGaAs mHEMT Cascode 110 11 450 Pig= 7@75
[5] >491 500 nm InP DHBT Cascode >110 13 129 Ps= 10@ 5-110
[11 597 500 nm InP DHBT Tricode 150 12 340 Ps= 13@110
[7.81 697 500 nm InP DHBT" Tricode 175 12 180 Pigs= 8.4@150
[9] 1483 250 nm DHBT 2 Cascade-cascode 235 16 117 NA
[141 1550 250 nm SiGe HBT Cascaded, cascode 180 18.7 86 Ps= 0@100
This work | >1743 500 nm DHBT Feedback, distributed, cascode >110 24 350 OIP3= 20-24@5-65
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Fig. 4. (a) Group delay (ps) and deviation from linear phase (°) versus
frequency and (b) transimpedance (Z>;) in dB-Q versus frequency (GHz).

The measured forward gain S| shows slight deviations from
simulation between 5 and 60 GHz. In order to have a better
match, the circuit would have to be redesigned using electro-
magnetic (EM) coassisted simulation for the entire cell. To be
used as a receiver block in optical-to-electrical data converters,
the deviation from linear phase for signal propagation has
to be minimum. Fig. 4(a) shows the deviation from linear
phase and the group delay of the amplifier subsystem. The
deviation from linear phase remains within +15° from near
dc up to 80 GHz. This proves the quality of the circuit when
used in optical-electrical data converters for data rates beyond
100 Gbps. For its use as TIA-buffer subsystem, the overall
transimpedance has to be very large over the bandwidth.
According to Fig. 4(b), an average value of 65 dB-Q has
been achieved within the bandwidth from near dc to 110-GHz
frequency.

B. Large-Signal Measurements

The large-signal measurements of the subsystem were car-
ried out using a performance network analyzer-X (PNA-X).
Since the signal distortion is a crucial component for
receivers, third-order intermodulation product (IM3) measure-
ments between 5 and 65 GHz were carried out, rather than
the saturated power measurements. This linearity measure-
ment was done by applying the standard procedure of using
two signal tones, directly generated by the PNA-X, with a
frequency separation of 1 MHz. The input and output power
and that of the intermodulation products were recorded for
the fundamental and third harmonic, compensating the path
losses, e.g., in probes, cables, and attenuator. The fundamental
and third harmonic data are plotted in Fig. 5(a) for the
frequency of 35 GHz. The 10-dB/dec slope of the fundamental
output power data and the 30 dB/dec slope describing the
third harmonic data cross at OIP3 = 23 dBm. With the
same approach, the output third-order-intercept point (OIP3)
points have been extracted from 5 to 65 GHz and plotted
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Fig. 5. (a) OIP3 for 35 GHz and (b) OIP3 as a function of frequency between
5 and 65 GHz.

in Fig. 5(b). The OIP3 varies between 20 and 24 dBm, which
is very high for this class of subsystem (with beyond 110-GHz
bandwidth) and has been demonstrated so far in only a single
broadband circuit [11] with OIP3 = 24 dBm. This high value
of OIP3 is indicative of the linearity, which is very high and
essential for such broadband systems. Moreover, the value
remains constant over the frequency which is unlike other
previous reports, where linearity degrades when increasing
measurement frequency.

With reference to Table I, this work has the following merits
that signifies its unique contribution to the literature. First,
it demonstrates the highest GBP reported for any wideband
MMIC circuit or subsystem with beyond 110-GHz band-
width. Second, very high linearity is achieved together with
good group delay behavior, as required in optical-to-electrical
receivers, for instance.

V. CONCLUSION

The work presented demonstrates a receiver subsystem
integrating a multipurpose amplifier and a power buffer in
InP DHBT technology. Not only that it achieves the high-
est GBP so far, it does so with high linearity, relatively
low-power consumption, low-signal phase distortion, and a
broadband input—output match. The results show the potential
of highly complex multicircuit integration in InP DHBT-based
MMICs for transceiver systems operating in the milimeter
wave (mm-wave) to terahertz frequency range.
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