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Featured Application: This paper can be an important starting point for establishing beam profile

measurements as an essential characterization tool for terahertz emitters.

Abstract: Knowledge of the beam profiles of terahertz emitters is required for the design of tera-
hertz instruments and applications, and in particular for designing terahertz communications links.
We report measurements of beam profiles of an optoelectronic silicon lens-integrated PIN-PD emitter
at frequencies between 100 GHz and 1 THz and observe significant deviations from a Gaussian
beam profile. The beam profiles were found to differ between the H-plane and the E-plane, and to
vary strongly with the emitted frequency. Skewed profiles and irregular side-lobes were observed.
Metrological aspects of beam profile measurements are discussed and addressed.

Keywords: terahertz; emitters; beam profile

1. Introduction

In recent years, continuous-wave (CW) Terahertz (THz) radiation has become a promis-
ing candidate for short range communication links bridging between fibre-optical networks
and wireless transmission, the so-called “THz bridge”. Besides this latest field of applica-
tions, THz technology is employed in a wide range of applications such as: spectroscopy [1],
bio-medical imaging [2,3], reflection imaging [4], security [5,6], non-destructive testing [7],
non-contact imaging for art and archaeological conservation [8,9], and wireless communica-
tion links [10,11]. CW THz spectroscopy with photomixing emitters and receivers enables
compact sensor heads that cover a broad frequency range of more than 3 THz combined
with high sensitivity [1,12-17]. In particular, photomixers based on indium phosphide
(InP) make it possible to build CW THz systems using off-the-shelf components originally
developed for fibre-based telecommunications [13,18,19]. The mature telecom technology
enables the development of compact and robust THz systems and even photonic integrated
circuits [14,20]. Wireless communication benefits from fibre-coupled THz transceivers since
they can be integrated seamlessly into optical communication networks, because they use
the same infrastructure, e.g., amplifiers or modulators [10,21,22].

High-speed photodiodes (PD), originally developed as photodetectors for optical
communications [23,24], serve as an optoelectronic converter in THz emitters [25-31].
To produce an optical signal modulated at the desired THz frequency fry,, two single-
mode laser signals (f1, f») are superposed. The envelope frequency of the resulting beat note
is the difference frequency of the laser signals. As long as the PD is capable of following
that envelope frequency, a photocurrent is generated equal to fryz = |f1 — f2 |. For efficient
radiation into free space, a broadband antenna is attached to the diode and the diode is
mounted onto a substrate lens [32]. In this work, a waveguide-integrated PIN photodiode
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with attached bow-tie antenna is employed, which is mounted on a hyper-hemispheric
silicon lens and packaged into a fibre-pigtailed housing. A detailed description of this
emitter and its THz performance can be found elsewhere [33].

While many aspects of PD devices and THz systems as a whole have been inten-
sively studied, the emitter radiation pattern in the THz domain is generally assumed to be
Gaussian. Since mirrors or lenses are commonly employed in spectroscopic and sensing
applications, the beam profile of THz emitters remains widely unknown. However, in THz
communication links, no beam forming elements can be placed in the free space between
the emitter and the receiver. For all applications, but particularly for those involving
medium and long-range free-space propagation such as communications, it is important to
have a good understanding of the spatial profile of the THz beam. Therefore, an investiga-
tion of the beam profile is urgently required to develop transmitters, i.e., antenna structures,
dedicated to THz communication links. In microwave and millimetre wave communication
systems, the characterization of emitter (transmitter) beam profiles has long since been
accepted as an essential tool. In this field, the techniques for antenna characterisation are
extensively developed and well understood [34]. Furthermore, specialized facilities are
available to perform the required measurements. None of these as yet exist for THz devices.
THz radiation is often assumed to propagate as a perfect Gaussian beam, which the present
study shows to be inaccurate.

There is very little published literature on measurements of beam profiles of CW THz
emitters, with the vast majority of beam profile data describing pulsed systems [35-38].
This is primarily due to the widespread use of pulsed THz systems for spectroscopy,
where beam profile properties may give rise to errors in spectroscopic data. Moreover,
pulsed THz emitters have peak powers that are 3—4 orders of magnitude higher than CW
devices, facilitating beam characterisation. Of the existing literature on CW beam profiles,
most are for high power laser sources with a narrow tuning range such as quantum cascade
lasers (QCLs) [39,40] and gas lasers [41].

In this study we performed detailed measurements of the beam profile of a commercial
THz emitter based on a PIN photodiode at frequencies between 100 GHz and 1 THz, and for
both E-plane and H-plane.

2. Materials and Methods

The PIN diode emitter was fabricated at Fraunhofer HHI in Germany [33]. A diagram
of the emitter antenna is shown in Figure 1 with the E- and H- planes indicated. The emitter
is mounted onto a hyper-hemispherical high-resistivity silicon (Si) lens with a diameter of
10 mm to reduce both beam divergence [32] and coupling losses (due to Fresnel reflections)
from the InP substrate to air. The beam profiles were obtained using an angular mapping
method, applied in two orthogonal orientations to yield beam profiles in the E-plane and
H-plane. The frequency of the emitter was tuned from 100 GHz to 1 THz.

The beam profile of an emitter can be described by adopting two different approaches:
(i) lateral displacement or (ii) angular displacement of the emitter with respect to the re-
ceiver. For a collimated beam where lateral dimensions and profile are preserved with
distance from the source, lateral mapping is appropriate to describe the beam profile.
For a divergent source, angular mapping is more appropriate, because angular spread
and variation is preserved with distance from the source. Since the PIN diode emitter
examined here is a divergent source, its beam profiles were measured using an angular
mapping method.



Appl. Sci. 2021, 11, 465

30f12

C antenna
t waveguide
bias pad /
i E\
PD
Z||e
G—Pl
H

Figure 1. (a) Photograph of the fibre-coupled PIN-PD emitter module. Optical fibre (blue cable)
and SMB cable (black cable) for the electrical bias can be seen. (b) The H- and E-plane orientations
are marked on the housing of the module. (c) Schematic structure of the PIN-PD emitter chip.
The waveguide integrated PD is connected to an extended bow-tie antenna with a bracket-like
electronic structure (inset). H- and E-field orientations are highlighted.

The angular profiles of both orientations of the emitter were measured using the setup
shown in Figure 2. The emitter was placed on a rotary stage and rotated with respect to
the detector from —45° to +45° in 0.2° steps. The detector was a Tydex GC-1T Golay cell
with an 11-mm aperture. The emitter was powered and controlled by a Toptica TeraScan
system. The bias modulation frequency was set to 11.242 Hz, since this was the optimum
modulation frequency to maximise the responsivity of the Golay detector. The output of
the detector was read by a lock-in amplifier (Signal Recovery 7265 DSP).
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¥

THz Source z

45¢°

Figure 2. Experimental set-up for mapping angular beam profiles. The source, mounted on a rotary
stage, is rotated between —45° and 45° with respect to the detector. The detector is placed on a linear
translation stage to allow variation of the distance between the emitter and detector.

3. Results
3.1. Power Measurements

The power output of the emitter, shown in Figure 3a, was measured for frequencies
between 50 GHz and 1000 GHz using both a pyroelectric detector (Sensor- und Lasertechnik
THZ 10) and a Golay cell (Tydex GC-1T). THz radiation from the emitter was collected
and re-focused by two parabolic mirrors, as shown in Figure 3b. The pyroelectric detector
was calibrated by the national institute for metrology of Germany (PTB) and was used
to measure the emitter power at frequencies between 50 GHz and 500 GHz. Frequencies
between 200 GHz and 1000 GHz were measured using the more sensitive Golay cell,
and the overlapping measurements between 200 GHz and 500 GHz were used to calibrate
the Golay cell responsivity. Measurements were taken in 10 GHz steps.
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Figure 3. (a) Power output of the PIN diode as a function of frequency. Power was measured with a
calibrated pyroelectric detector for frequencies below 500 GHz and with a Golay cell for 200 GHz to
1000 GHz. (b) Optical setup for power measurement.

3.2. Beam Profiles

Angular beam profile measurements for both orientations of the PIN diode emitter
were performed with the Golay cell for a frequency range of 100 GHz to 1000 GHz at 50 GHz
intervals. The resulting profiles are shown in Figure 4a,b. All profiles were normalised to
allow for ease of comparison, since the power ratio between the low and high frequencies
is over two orders of magnitude (see Figure 3).

The H-plane profiles in Figure 4a, while not perfectly Gaussian, show a single peak
centred around 0° for frequencies below 400 GHz. Between 400 GHz and 600 GHz, the sin-
gle peak becomes significantly broader and shows significant small features throughout
the profile. Above 600 GHz, the centre of the peak skews to the negative angles.

In Figure 4b, the E-plane profiles for frequencies below 250 GHz also show a peak
centred at 0°; however, unlike the H-plane profiles, there are also significant side lobes
either side of the centre. Above 300 GHz, these side lobes disappear, but the main peak
becomes heavily skewed to the positive angles and highly asymmetrical.

While the bow-tie antenna itself is symmetric, the feeding lines and the InP substrate
are not. When the wavelength is of a similar order as the dimensions of the feeding point
structures or the substrate, those structures start to radiate or cause refraction. The influence
of the feeding point geometry on the beam profile is studied in a separate publication.
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Figure 4. Normalized

angular beam profiles of the PIN diode emitter for frequencies between 100 GHz and 1 THz at

50 GHz intervals, measured at a distance of 60 mm from the emitter for: (a) H-plane orientation and (b) E-plane orientation.

All profiles are normalised for ease of comparison.

3.3. Experimental Considerations
3.3.1. Near Field vs. Far Field

The electromagnetic field of an antenna is commonly described as evolving from
the near field region, where the angular distribution of the field varies with distance from
the antenna, to the far field region, where the angular distribution is distance-independent.
The near-field region may be further divided into the reactive and radiative regions. The re-
active near field region decays rapidly with distance from the antenna, and becomes
negligible compared with the radiative component within one wavelength distance from
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the antenna. Within the radiative near field region, the distances from an observation point
to two arbitrary antenna elements will generally be different, so that the relative phase
and amplitude of their contributions to the field will be different. As the observation point
moves further away from the antenna, the relative differences in distances between an-
tenna elements to the observation point will decrease, and so the contributions of separate
antenna elements will become more equal. Hence, in the far field, the antenna appears
as a point source, and the angular distribution of the emitted field becomes independent
of the distance from the antenna. Therefore, it is necessary to ensure that antenna beam
profiles are measured in the far field.

The commonly used criterion for the distance from the antenna at which its radiation
is considered to be far-field, L¢,,, may be calculated from [42]:

A 2c
FOI‘ D < E 7 Lfﬂi’ > z)k = 7, (1)
A 2D?*  2D?f
ForD>§,Lfa,>T: o )

where D is the emitter aperture and A is the radiation wavelength. Equation (2) is sometimes
referred to as the Fraunhofer distance. This is defined as the distance between a radiating
point source and a receiving antenna of aperture D such that the spherical wavefront of
the source varies by no more than 71/8 radians over the entire antenna aperture. These limits
for the far field distance are somewhat arbitrary, and so it is preferable to measure the beam
profiles at a distance greater than that suggested by Equations (1) and (2). Figure 5 shows
this distance for frequencies between 100 GHz and 1 THz for radiation travelling through
both air and silicon, as calculated from Equation (2).

In the case of the PIN diode THz emitter, the aperture is the size of the bow-tie antenna,
which is 1 mm. The emitter is mounted on a hyper-hemispherical Si lens having a diameter
of 10 mm. The overall combined thickness of the silicon lens and InP chip is approximately
6.5 mm [32]. As the wavelength of the radiation is shorter in silicon (Ag; = Ag/ng; where
ngi = 3.42 is the refractive index of silicon), the far field distance in silicon is longer. It can
be seen from Figure 5 that at frequencies above 300 GHz, the near-field region extends
beyond the silicon lens boundary. Figure 4a,b shows peak broadening and an increase in
small features in both the E- and H- plane profiles beginning at 300 GHz to 400 GHz and
continuing up to 1 THz. This could indicate that the near-field extending beyond the lens
has a significant effect on the profile. As stated previously, all profile measurements shown
in this paper were recorded at a distance of 60 mm from the antenna; thus, they are well
within the far field region for all frequencies measured.

25 T T T T
in air
in Si

20+

15+

Si lens boundary

Far field distance (mm)

200 400 600 800 1000
Frequency (GHz)

Figure 5. The far field distance, as given by Equation (2), for frequencies between 100 GHz and 1 THz
for radiation travelling through air and silicon.
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3.3.2. Dependence of Beam Profile on Distance from Detector

The validity of the angular profile measurements in this study is based on the assump-
tion that the emitter produces a divergent beam, such that the angular profiles are distance
invariant. In order to verify this assumption, angular profiles at 600 GHz were recorded at
different distances from the emitter for both emitter orientations. The frequency of 600 GHz
was chosen for this test and those in the following sections because at 600 GHz there is a
single peak in both E-plane and H-plane, and there is sufficient THz power to provide good
SNR (signal-to-noise ratio). The profiles shown in Figure 6a,b confirm good consistency,
apart from minor variations in the width and height. These small features can be explained
by the differences in angular resolution caused by varying the distance between the emitter
and detector. The angular resolution will be discussed in detail in the next section.
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Figure 6. Beam profiles measured at varying distance between the emitter and the detector, at 600 GHz for: (a) E-plane
orientation and (b) H-plane orientation.

3.3.3. Angular Resolution

The step size of the rotary stage used in these measurements was 0.2°. However, as
seen in Figure 2, the angular resolution 0,es of the measurements was limited by the diame-
ter of the detector aperture and the distance between the emitter and detector. The aperture
of the Golay detector was 11 mm and its distance from the emitter was 60 mm. Using
these values, the acceptance angle of the detector is calculated to be 10.4°. To confirm this
estimate, additional measurements were made at distances of 35 mm and 70 mm from
the emitter, where the data at 35 mm should have an acceptance angle approximately
double that at 70 mm. An extrapolation procedure was then applied to the 70 mm data
to obtain an estimated profile for 35 mm, which allows to compare it with the experimen-
tal data measured at 35 mm distance. The results of this test at 600 GHz are shown in
Figure 7a,b for both orientations. Both extrapolated profiles agree quite well with the mea-
sured data. Small differences in the profiles may be attributed to the aperture of the Golay
being circular, whereas a square aperture was assumed in order to simplify the calculation.

Simulations of the effect of angular resolution on the observed beam profile are shown
in Figure 8a—f. A variety of model beam profiles were generated with a resolution of 0.2°,
including a single Gaussian, a skewed Gaussian, and Gaussians with additional lobes.
These profiles were then extrapolated to show their appearance with a coarser angular
resolution. The following can be concluded from these simulations:

1. In the case of a single central peak (FWHM > 0.,s), whether a perfect (Figure 8a) or a
skewed (Figure 8b) Gaussian, coarser resolution will cause negligible distortion or
none, even when resolution 6 is reduced by a factor of 10.

2. When narrow features are added to the curve (Figure 8c—f), then angular resolutions
greater than the width of the feature (FWHM < 0,¢;) cause broadening and flattening
of the feature.
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Figure 7. Comparison of the profile at 600 GHz measured at 35 mm from the emitter with an acceptance angle of 17.9°
with the profile extrapolated from a measurement at 70 mm from the emitter with an acceptance angle of 9.0°: (a) E-plane
orientation and (b) H-plane orientation.
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Figure 8. Simulations of model beam profiles as they would appear at various acceptance angles, revealing the effects of
angular resolution. The initial profile has 0.2° resolution. (a) single Gaussian, (b) skewed Gaussian, (c) Gaussian with
shoulders, (d-f) Gaussian with additional 3° wide feature of differing amplitudes and separation.

3.3.4. Standing Waves

Standing waves are an important consideration in measurements of beam profiles,
because they may cause errors and artefacts in the data. Standing waves are formed
between the emitter and detector when their surfaces act as a resonator, supporting multiple
reflections. The presence of standing waves causes significant variations in the detected
signal arising from wavelength-scale changes in the relative distance between the emitter
and detector. In order to understand the effect of standing waves, the beam profile at
600 GHz was mapped for both orientations over the distance equal to half-wavelength
(0.25 mm). The results are shown in Figure 9a,b below. It is seen that standing waves have
a negligible effect on the observed beam profile.



Appl. Sci. 2021, 11, 465

9of 12

a 20 T T ‘ p 30 ‘ ‘
——35.6 mm ——35.5 mm
——35.7mm 251 [——35.7mm 4
35.8 mm 35.55 mm
15+ ——35.9mm | —— 35.65 mm |
= —— 35.85 mm S 20+ ——35.75mm : 7
s s
5 10} 1 & 5p " 1
o [o]
g o
10+ f b
5| J
5L N
U ! 1 1 ! 0 | ! ! | !
-45 -30 -15 0 15 30 45 -45 -30 -15 0 15 30 45
Angle (deg) Angle (deg)

Figure 9. Comparison of beam profiles at 600 GHz measured at various positions on a standing wave. (a) E-plane orientation

where 35.6 mm and 35.9 mm are at the wave maximum. (b) H-plane orientation where 35.5 mm and 35.75 mm are at

the wave maximum.

3.3.5. Repeatability of Measurements

The final experimental issue to be considered is measurement repeatability. Figure 10
shows the mean and standard deviation of five scans of the emitter at 600 GHz in the H-plane.
It is seen that the noise in the data is negligible, and the error bars are too small to be
distinguishable in the plot.

25 T T T T T

20+ 1

15+ 1

Power (a.u.)

10 1

O 1
-45 -30 -15 0 15 30 45
Angle (deg)

Figure 10. The mean and standard deviation of 5 beam profile scans at 600 GHz in the H-plane
orientation. The error bars are shown in pink.

4. Discussion

The observed deviations in the beam profiles from a Gaussian beam may come from
the coupling of the THz antenna and the Si lens [43-45]. It has been previously shown
that small differences in the position of the lens with respect to the antenna can have
significant effects on the profiles of the emitted radiation [43,44]. However, the antenna is
positioned at the centre of the lens with an automated pick and place tool and the deviation
from the central position is smaller than 20 um. Hence, the effect of incorrect positioning
of the chip on the lens should be of minor importance. In addition, numerical models
of the beam profiles, which will be discussed in detail elsewhere, show that the emitted
beam profile is expected to have a circular symmetry when the lens is perfectly centred
on the emitter. However, when a small off-axis displacement (<100 um) is present in the
alignment of the lens with the centre of the emitter, both the main peak and side lobes can
become asymmetrical and the main peak may become skewed. Filipovic et al. [45] showed
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that such a displacement can cause the peak of the radiation profile to be shifted from
the centre by >10°. This type of behaviour is particularly apparent in the high frequency
profiles in both orientations, as seen in Figure 4.

Internal reflections and refractions in the lens can give rise to side lobes in the beam.
Although the dimensions of the silicon lens, especially the height of the hyper-hemisphere,
are designed for minimal internal reflections, fabrication tolerances, which are as high as
+ 50 um, may influence the observed beam profile.

Furthermore, the features in the beam profile differ significantly between the E-plane
and the H-plane, with the E-plane having more regular profiles. At lower frequencies,
the features appear more pronounced. This effect is attributed to the design of the antenna
structure and the feeding point geometry, which connects the diode with the bowtie
antenna (see Figure 1c). The influence of the feeding point and the antenna geometry on
the beam profile of PIN diode emitters is currently under further investigation.

5. Conclusions

The angular beam profiles of a THz emitter based on a PIN photodiode with attached
bow-tie antenna were measured in both the E-plane and H-plane orientations at frequencies
between 100 GHz and 1 THz using a Golay cell power detector. Beam profiles were recorded
in the far-field of the antenna, and were found to be distance-invariant. The effects of
angular resolution were examined, and it was concluded that the employed setup is capable
of resolving features within 10° angular width.

For frequencies above 600 GHz, the beam profiles in the H-plane orientation were
found to be significantly asymmetrical and skewed away from the centre. This may
be attributed to a slight misalignment between the antenna and the centre of the lens.
Moreover, the small feeding point structure that connects the photodiode and the antenna
might act as a contributing radiating element and thus distort the beam profile when
the wavelength becomes sufficiently small. At frequencies below 250 GHz, side lobes in
the beam profiles were observed in the E-plane, and these may be attributed to internal
reflections within the silicon lens.

Although some of the lower frequency profiles consist of a single peak centred around
0°, none of the measured profiles are perfectly Gaussian. This indicates the importance of
acquiring accurate measurements of the radiation profiles of such emitters before consider-
ing them for use in free-space transmission systems such as those used for communications.
Accurate profiles will allow for better link budget estimations in communication links.
Moreover, reliable methods for beam profile measurements are essential for efficient com-
ponent design. It is also important to consider the beam profile in designing optics for
spectroscopy systems in order to ensure artefact-free measurements with maximum sensi-
tivity. In addition, accurate beam profile measurements are essential for the development
of broadband terahertz emitters. Hence, this paper can be an important starting point for
establishing beam profile measurements as a characterization tool for terahertz emitters.
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